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Quality of CO,, source/sink estimates
depends on:

e Instrument characteristics

e radiative transfer algorithm

e retrieval algorithms

e assimilation method

e chemistry and transport model

e atmospheric conditions (affects retrieval sensitivity)
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Instrument characteristics
- AIRS, IASI, GOSAT, and TES instruments at mid-infrared (700 cm):

Native SIN @
resolution native

~525 ~525*
~225 ~225%
>300%% >475
~80 ~200%**
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Retrieval approach

- Based on the optimal estimation framework (Rodgers, 2000), temperature,
H20, CO2, cloud and surface parameters are jointly retrieved

- Optimal estimation framework provides a characterization of CO, estimates
In terms of the accuracy, precision (Bowman, 2006; Worden, 2004):

e Joint temperature, H20, CO2 retrievals
— Minimizes temperature, water bias

 Choice of windows

— Choose broad set of windows in v2 and laser bands
— Remove spectral areas that are not well fit

« Constraints based on altitude-dependent Tikhonov (Kulawik Qg a’l 2006)
— Use 6% variability near surface and 2% higher
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Information at infrared wavelengths m

radiances and Jacobians

Jacobians show the sensitivity
of radiances to changes in

CO,. This location shows the Il ‘Iflr' li
change in radiance at 715 cm u.lw'
when CO, at 5 km is changed '

VIR

v, band is mainly sensitive to
CO, in the middle
Troposphere through the
lower Stratosphere

Laser bands are sensitive to
middle Troposphere and
below

Jacobian[v,z] = d(Radiance[v])/ dIn(CO,[z]) / radiance_noise[v]
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Errors in CO, estimates strongly depend on the
accuracy of temperature and water vapor

Change in TES calculated radiance when boundary layer values (0-2
Km) or mid-Troposphere (4-8 km) are changed for optimal boundary
layer viewing conditions (e.g. high thermal contrast):

7

We find that 1K temperature bias propagates ir2é6 ppm CQDbias.—
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Typical TES single target errors

« Estimated TES single target
error in the middle troposphere
IS ~8 ppm.

Uncertainties in temperature
and retrieval sensitivity
(smoothing) are the dominant
errors for CO, estimates using

the IR bands TES maximum
sensitivity
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Averaging targets

 Averaging more targets
(over a larger spatial
area) decreases error
vs. Mauna Loa

Progression agrees with
1/sqrt(N) reduction in
error for averages
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Tropospheric Emission Spectrometer CO, nasa
Observed yearly and seasonal variations are consistent with ~
In situ datau

Monthly averages of ~200 targets
Monthly mean error is 0.9 ppm with 5.6 ppm bias
Bias close to estimated spectroscopic error of ~4 ppm (Devi, 2003)
Greatest sensitivity in middle Troposphere (500 mb) &
Validated for low O.D. cloud, ocean, 40S to 40N
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Global (40S-40N) TES results

Comparison of monthly mean TES gridded values (small circles
and interpolated values at 511 hPa) and ground station data

(large circles)
A low bias correction of 5.6 ppm is added to TES CO,

L
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A LY

Approach for estimating CO, sources & sinks™
Observing System Simulation Experiment (OSSE) by Nassar et al., 2009

TES: 20 x 30 degree x 1 month averages

Errors are driven by number of clear sky
profiles per bin
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met . fields, specialized CO, source/sink
inputs

FLUXES

il + 14 regions of combustion and terrestrial
exchange + “rest of world” (29/elements)

A priori flux uncertainty:
— 100% for terrestrial blosphe{.é
— 30% for combustion |
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TES alone:

improves flux uncertainty from
100% initial uncertainty to 15-
30%

East Asia
Maritime Asia

76 surface stations alone (with 0.1
ppm errors assumed):

improves flux uncertainty from
100% initial uncertainty to 15-
30%
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O A Priori
O GV 0.3% A Posteriori
B GV 0.03% A Posteriori

TES A Posteriori

* Rest of the World (Oceans + Ice) divided by 10 B True State

Based on this analysis, the information content of TES is compara et0

surface sites , f

TES (free troposphere) and surface station (boundary layer) sensmvmes

are complementary W
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Conclusions

TES observed yearly and seasonal variations are consistent with in situ data

TES CO, with error characterization can be used to improve estimates of CO,
sources and sinks

Next steps

Using real TES data for source and sink estimates

Examine the use of other sensors for measuring CO,, profiles to improve source and
sink estimates

Validation versus aircraft data over land in progress
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Increased sensitivity to boundary layer CO, =
Improved CO, source/sink estimates

- how often does TES observe CO, in the boundary layer?

*

- highest sensitivity for daytime, summer; ~5% with better than 0.3 DOF
- 0.3 DOF: for a 20 ppm enhancement, TES would observe +6 pp%

By
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Boundary layer sensitivity
Summertime land case (% on previous page)

O O

TES Improvements

TES IR measurements (left) can be sensitive to the boundary layer but cannot
distinguish the boundary layer from the free troposphere

For 3x increased signal to noise and independently obtained temper tL}re
boundary layer CO, can be discriminated from the free trop. in some cases
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GOSAT temperature study

e Uncertainty in temperature propagates into CO,
« 1K bias error - up to 60 ppm errors in CO,
e Simulation study

January, Lon. E105-120 April, Lon. E105-120
with T errors

20 15 10 -5 0 5 10 15 20

When T bias of -1 K for forward spectra,
+£15% CO, errors below 100 hPa Error in CO, (%)
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