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Abstract Recent cumulus and turbulence parameterization changes to the NASA GISS ModelE2 have
improved representation of the Madden-Julian Oscillation and low cloud distribution, but their effect on
composition-related quantities is not known. In this study, we simulate the vertical transport of carbon
monoxide (CO) from uncontrolled biomass burning in Indonesia in late 2006, during which uniquely high CO
was detected in the upper troposphere. Two configurations of ModelE2, one without the changes (AR5) and
one with the changes (AR5′), are used for an ensemble simulation of the transport of CO from the biomass
burning. The simulation results are evaluated against new CO profiles retrieved jointly from the Aura
Tropospheric Emission Spectrometer and the Microwave Limb Sounder. Modeled upper tropospheric CO
using the AR5 physics was unrealistically high. The AR5′ physics suppress deep convection that reaches near
the tropopause, reducing vertical transport of CO to the upper troposphere and bringing the model into
better agreement with satellite CO. In this regard, themost important changes were related to the strength of
entrainment of environmental air into the convective column, the strength of re-evaporation above cloud
base, and a negative plume buoyancy threshold based on density temperature. This study illustrates how
individual, noncomposition model changes can lead to significantly different modeled composition, which in
this case improved agreement with satellite retrievals. This study also illuminates the potential usefulness of
CO satellite observations in constraining unobservable processes in general circulation models.

1. Introduction

Early, limited upper tropospheric carbon monoxide (CO) measurements suggested that deep convection is a
key mechanism through which CO is vertically transported from near the planetary boundary layer (PBL).
Seiler and Fishman [1981] showed that along the west coast of the Americas, CO generally decreased with
altitude, except for a narrow band coincident with the Intertropical Convergence Zone (ITCZ), which they
attributed to polluted surface air being lifted to the mid and upper troposphere by ubiquitous convection
over the ITCZ. The same mechanism has been proposed to explain high upper tropospheric CO over, for
example, the Gulf of Guinea [Reichle et al., 1986], Oklahoma [Dickerson et al., 1987], and South America
[Roths and Harris, 1996; Pickering et al., 1996; Andreae et al., 2001].

Our understanding of this transport pathway has improved with sustained remote sensing retrievals of pollutants
in the troposphere. Elevated upper tropospheric CO fromMeasurements of Pollution in the Troposphere (MOPITT)
over the Indian Ocean in 2003 could be attributed to the horizontal transport and progressive convective uplift of
emissions fromAustralia, Indonesia, and Africa [Edwards et al., 2006]. Jiang et al. [2007] showed using observations
made with Aura Microwave Limb Sounder (MLS) that upper tropospheric CO and its long-range transport over
the Pacific peaked in the summer when convection was at its maximum. This was due to urban and industrial
sources, rather than biomass burning emissions, which were suppressed during that period by heavy rainfall.

Huang et al. [2012] analyzed MLS and Aura Tropospheric Emission Spectrometer (TES) CO measurements for
the entire 40°S to 40°N domain during 2007 and identified direct convective uplift of boundary layer air near
emissions sources as the dominant source of elevated CO in the upper troposphere, as opposed to uplift
of polluted air first advected from source regions. Livesey et al. [2013] showed consistent seasonal upper
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tropospheric CO peaks over polluted regions from 2004 to 2011. Like Jiang et al. [2007], they noted that upper
tropospheric CO is less likely to be related to biomass burning emissions directly coincident at the surface
because deep convective precipitation will be simultaneously suppressing fire activity.

Modeling the relationships among emissions, transport, and chemistry is a challenge but necessary to under-
stand the impacts of emissions. Our interest is in parameterized turbulent and convective processes that
drive subgrid-scale convection, which remains a major source of uncertainty in global-scale models of the
atmosphere [e.g., Arakawa, 2004; Sherwood et al., 2014] that limits the accuracy of simulated emissions fate.
Chatfield et al. [1998], for example, required an arbitrary 150% increase in parameterized cloud base mass flux
for CO at the surface to reach the upper troposphere, but this required an increase in emissions to maintain
reasonable CO concentrations in the lower troposphere. The simulated seasonal CO cycle in Abad et al. [2011]
was less evident than in ACE-FTS CO retrievals, which was attributed either to underestimated biomass burn-
ing emissions or too little fast vertical transport. Park et al. [2013] arrived at a similar conclusion using the
WACCM model driven by MERRA meteorology over South America. Liu et al. [2010] found that the modeled
upper tropospheric CO in 2005 over South America using Goddard Earth Observing System version 4 (GEOS-4)
assimilated meteorology peaked in November rather than in October as observed by MLS, due to emissions
from the surface being detrained at too low an altitude. This was exacerbated for simulations using GEOS-5
assimilatedmeteorology, which has a different convection scheme, due to the late arrival of convective activity.

Errors in vertical transport therefore place a hard limit on agreement between modeled and observed CO.
Worse, emissions adjustments can be compensating for errors in vertical transport. Model-data agreement
might be improving but possibly for the wrong reasons. These problems can be understood to some extent
with a Chemical Transport Model (CTM) through diagnosis and by conducting simulations with different pre-
scribedmeteorology. But to fully understand the specific contributions of different underlying processes to ver-
tical pollutant distribution, the components of the model’s parameterization must be examined individually.

The purpose of this study is to do so using experiments with the NASA GISS ModelE2 composition-climate
model (CCM) evaluated against satellite retrievals of CO in the troposphere. Ott et al. [2011] demonstrated
this approach using the GEOS-5 general circulation model (from which the GEOS-5 assimilated meteorology
originates) equipped with basic CO chemistry for a free-running atmosphere with no assimilation of observa-
tions. We focus on the parameterizedmoist convection and turbulence because they dominate subgrid-scale
vertical transport in the CCM. Changes are drawn from those that recently led to simulating a Madden-Julian
Oscillation (MJO) in ModelE2 [Kim et al., 2012] and slightly improved marine stratocumulus [Yao and Cheng,
2012]. Field et al. [2014] evaluated different model versions including these changes against water vapor
isotope retrievals from TES, finding that the Kim et al. [2012] and Yao and Cheng [2012] modifications led
to considerably better agreement in the tropical lower free troposphere.

Our goals are to determine the following: (1) if the choice of subgrid physics affects the vertical distribution of
CO in ModelE2 during a major CO emissions event in 2006 over Indonesia and (2) the pathways through which
modeled CO arrives in the upper troposphere from the source region and their dependence on subgrid physics.

2. Experiments and Data

We examine the emissions episode that occurred in Indonesia from September to November 2006. Due to
combined El Niño and positive Indian Ocean Dipole conditions, a stronger and longer dry season led to unin-
terrupted biomass burning in degraded peatlands [Field and Shen, 2008; van der Werf et al., 2008; Field et al.,
2009]. Figure 1 shows the Global Fire Emissions Database (GFED) CO estimates from July to December 2006
over the primary burning region in south central Sumatra and Kalimantan (Indonesian Borneo).

The event is an important natural experiment for understanding the roles of emissions, transport, and chem-
istry in controlling the vertical distribution of pollutants. Mean October 2006 TES CO at 511 hPa exceeded
200 ppbv over the region [Logan et al., 2008]. Lai et al. [2011] attributed upper tropospheric CO enhance-
ments of up to 200 ppbv measured in situ over the Philippines to the burning. The 2004–2011 MLS record
of Livesey et al. [2013] showed that normally, upper tropospheric CO over Indonesia has a weaker seasonal
peak compared to biomass burning regions in South America, northern Africa, or southern Africa, because
during most years the dry seasons in this part of Indonesia are still wet enough to suppress severe burning.
The 2006 event, however, stands out over the tropics as among the strongest during the MLS period. In
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modeling the event, previous studies
have shown strong sensitivity to whether
deep convective transport is included
[Nassar et al., 2009] and to the choice of
prescribed meteorology [Zhang et al.,
2011]. Worden et al. [2013] showed that
after making an inversion-based esti-
mate of CO emissions during the event
using MOPITT profiles as a top-down
constraint, residual errors had significant
vertical structure, which was attributed
to vertical transport errors in the GEOS-
Chem CTM, in their case run with GEOS-
5 meteorology.

The appeal of studying this event with a
model is the combination of an unu-
sually large emissions source near sharp
gradients in convective activity and the
availability of a new joint Aura TES/MLS

CO retrieval against which tomake comparisons. The CO acts as a measurable, relatively insoluble tracer influ-
enced strongly by complex processes in themodel whose representation is continually being developed. The
large signal resulting from an isolated CO tracer source at the surface should make any transport dependence
on subgrid physics stand out from background noise.

We conducted simulations from June to December 2006 using the GISS ModelE2 composition-climate model
[Shindell et al., 2013; Schmidt et al., 2014], with a 2° latitude by 2.5° longitude horizontal resolution and 40 vertical
layers from the surface to 0.1 hPa. Tropospheric/stratospheric chemistry includes 156 chemical reactions among
51 gas species, while the aerosol scheme includes prognostic simulations of the mass distributions of sulfate,
sea-salt, dust, and carbonaceous aerosols [Koch et al., 2006, 2007]. Photolysis rates are simulated using the
Fast-J2 scheme [Wild et al., 2000], which accounts for the effects of modeled overhead ozone, clouds, aerosols,
and surface reflections. The model’s skill in capturing key tropospheric gaseous constituents and aerosols has
been evaluated and shown to be realistic [Koch et al., 2006; Voulgarakis et al., 2011; Shindell et al., 2013]. The
model has also been shown to represent tropospheric OH reasonably well, when compared to other models
and to observation-based estimates [Voulgarakis et al., 2013]. Aerosols in the model are radiatively active,
and the first indirect effect is included. Biomass burning emissions come from the monthly resolution version
of the Global Fire Emissions Database 3 (GFED3) [van der Werf et al., 2010] and were assumed to be uniformly
mixed throughout the boundary layer upon release. Anthropogenic emissions of nonbiomass burning gases
and aerosols come from Lamarque et al. [2010] and vary from decade to decade, with linear interpolation for
intermediate years. Well-mixed greenhouse gas concentrations vary according to global mean observed values.

A number of modifications have been made to the convective parameterization, which are summarized in
Table 1. We refer to the physics in Schmidt et al. [2014] as the AR5 version of the model and the physics with
the Kim et al. [2012] and Yao and Cheng [2012] changes as the AR5′ version of the model. The AR5′ changes
are (i) the removal of the entrainment limiter, which sets the fractional entrainment rate to zero whenever the
mass of the updraft plume entering a layer exceeds the mass of the cloud base layer, (ii) the increase of the
fractional entrainment rate coefficient of the less diluted plume from 0.3 to 0.4, (iii) allowing more rain
re-evaporation by limiting the maximum amount of condensate used in the downdraft to half of the total
condensate and by allowing the rain re-evaporation to occur in entire plume levels instead of only below
cloud base, and (iv) using density temperature (virtual potential temperature including water vapor and
cloud condensate) instead of potential temperature in calculating downdraft buoyancy.

In total, we ran nine experiments. We started with the AR5 version of the model as the control and then ran
experiments where single parameterization changes from Table 1 were made (i.e., the changes did not
“accumulate” toward AR5′). We also included an experiment where all changes to the cumulus parameterization
were made together (but without changes to the turbulence scheme) and, finally, an experiment where all
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Figure 1. GFED CO emissions over the region identified in Figure 2b.
Shown are the monthly mean estimates and the daily interpolation of
those estimates used as input to ModelE2.
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AR5′ changes were made. All experiments were run with observed sea-surface temperatures prescribed as
the boundary conditions. For each configuration, 12 ensemble members with randomly perturbed initial
atmospheric temperature conditions were run to separate the physics response from meteorological noise,
similar to Ott et al. [2011]. Most diagnosis was focused on the AR5 and AR5′ end-member experiments.

We compared model CO to a new joint Aura TES/MLS retrieval [Luo et al., 2013]. The Aura CO profile data are
the retrieval product using combined TES andMLS spectral measurements taken at the nearest TES nadir and

Figure 2. October 2006 precipitation for (a) GPCP v2.2, (b) GPCP departure anomaly from 1981 to 2010 long-term mean, (c) AR5, and (d) AR5′. The AR5 and AR5′
precipitation are the means across 12 ensemble members. The black boxes indicate the emissions source region.

Table 1. Changes to Convection and Turbulence in ModelE2a

Parameter Description AR5 AR5′

Tρ Buoyancy threshold for downdraft initiation Potential temperature Density temperature (virtual potential temperature
including water vapor and cloud condensate)

NewCldBaseEntrLmt Limits on entrained mass at each layer Entrained mass at each layer limited to
that of plume base layer

Entrained mass at each layer limited to
mass of that layer

Plume1Entr0.4 Entrainment coefficient for less diluted plume 0.3 0.4
RevpAboveCldBase Extent of rain evaporation into environment Below cloud only Entire depth of plume
LessDDraftRevp Downdraft re-evaporation limit All condensate allowed to re-evaporate 50% of condensate allowed to re-evaporate
ATURB Vertical turbulent flux Diffusive and counter-gradient terms

from Holtslag and Moeng [1991]
Diffusive and counter-gradient terms from

Holtslag and Boville [1993]
Turbulent length scale Holtslag and Boville [1993] Holtslag and Boville [1993] above PBL, Nakanishi

[2001] within PBL including buoyancy length
scale dependent on TKE

PBL height diagnosis Turbulent kinetic energy profile Bulk Richardson number criterion from Holtslag
and Boville [1993]

aThe AR5 version of the model is described in Schmidt et al. [2014]. The entrainment and re-evaporation changes are discussed in detail in Kim et al. [2012] and
the turbulence-related changes in Yao and Cheng [2012].
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MLS limb tangent locations. In the lower troposphere, TES measurements provide CO retrieval information. In
the upper troposphere and lower stratosphere, the measurements from both instruments provide CO retrie-
val information. The joint retrievals in this range extend MLS data downward and increase sensitivity com-
pared to the TES-alone retrievals. Comparisons of TES alone, MLS alone, and the combined Aura CO
retrievals to colocated in situ balloon measurements illustrate the advantage of the Aura CO [Luo et al.,
2013]. Preliminary validation of Aura CO against HIPPO and MOZAIC data sets indicates that the Aura CO is
20–30% lower over 300–200hPa compared to the in situ data [Luo et al., 2014] which should be taken into
account for model comparisons.

The estimate of the atmospheric constituent profiles from remote sensing measurements is described by the
a priori profile and the averaging kernels. The proper way to compare retrieved and modeled CO is to esti-
mate the instrument-equivalent profile via the retrieval process. Where noted, we first sample themodel data
at the Aura locations and times. The Aura CO retrieval operators are then applied to the model profiles:

x ¼ Xa þ A Xmod � Xað Þ
where Xmod is the model profile, Xa is the a priori profile used in Aura CO retrieval, and A is the averaging
kernel. x^ is obtained to compare to the Aura CO.

Figure 3. (a) October 2006 Aura CO prior at 215.4 hPa and (b) cell-averaged retrieval. The red box in Figure 3b indicates the
emissions region.
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Table 2. October 2006 ModelE2 CO (ppbv) Statistics Over 10°S to 10°N, 80°E to 120°E Between 100 hPa and 287 hPa, the Black Box Shown in Figure 3b, for Raw
Model Fields and Model Fields After Applying the Aura Operatora

Experiment

Raw CO CO With Aura Operator

Mean Std 95% C.I. on Difference Mean Std 95% C.I. on Difference

AR5 (CTRL) 238.0 17.5 – 208.8 10.3 –
AR5_ATURB 219.5 10.6 (4.9, 32.1) 190.9 8.9 (10.3, 25.6)
AR5_EntrMassLim 210.3 13.7 (16.3, 39.1) 180.2 7.4 (19.1, 38.2)
AR5_TρDDrft 196.2 19.1 (29.7, 53.9) 174.1 9.2 (26.1, 43.3)
AR5_RevpAboveCldBase 193.8 11.2 (34.3, 54.0) 175.2 10.9 (25.6, 41.7)
AR5_HighEntCoef 225.9 14.6 (�2.9, 27.1) 216.4 14.3 (�17.4, 2.3)
AR5_LessDDrftRvp 232.1 20.5 (�10.6, 22.3) 204.2 13.9 (�6.9, 16.1)
AR5_CumulusChanges 162.0 13.4 (63.9, 88.1) 145.1 9.7 (56.2, 71.2)
AR5′ 163.8 12.2 (62.6, 85.9) 143.3 8.9 (58.9, 72.0)
Aura 124.2

aThe standard deviation is that across the monthly means of the 12 ensemble members for each experiment. The 95% confidence interval (C.I.) is that of the
difference between each experiment and AR5 (CTRL). Experiments with confidence intervals spanning zero are considered not statistically different from the AR5
experiment. The mean Aura CO for October 2006 is in the last row.

Figure 4. October 2006 ModelE2 AR5 CO at 215 hPa for (a) AR5 and (b) AR5′, averaged across 12 perturbed initial condition
ensemble members. The Aura operator has been applied to raw model CO output.
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3. Results
3.1. Basic Event Characterization for
Aura and ModelE2

For meteorological context, and to pro-
vide a sense of where the active convec-
tion is, Figure 2 shows the October 2006
GPCP precipitation, GPCP precipitation
anomaly, and the AR5 and AR5′ precipita-
tion, both averaged across the 12 ensem-
ble members. AR5 (Figure 2c) and AR5′
(Figure 2d) both show an east-west arc
of precipitation centered over the South
China Sea corresponding qualitatively to
the GPCP estimate (Figure 2a). The lar-
gest difference between AR5 and AR5′ is
over the western Pacific. The black boxes
show how close the emissions were to
the convective activity to the north over
the South China Sea. The severe burning

was the result of the dry anomaly stretching across Indonesia in Figure 2b, which had in fact first appeared in
July. AR5′ (Figure 2d) has less (2.1mm/d) precipitation than AR5 (3.5mm/d) (Figure 2c) over the source region.
AR5′ is closer to the GPCP estimate of 1.7mm/d, but the difference between AR5′ and AR5 is small compared
to regional gradients.

Figure 3 shows the Aura joint TES/MLS prior and retrieved CO at 215 hPa for October 2006 when the emis-
sions peaked. The orbital sampling pattern in Figure 3a provides a sense of the density of the data used to
construct the gridded Aura CO estimate in Figure 3b. The mean October 2006 CO over 10°S to 10°N, 80°E
to 120°E between 100 hPa and 287 hPa was 124 ppbv, which was the most pronounced anomaly during
the MLS period [Livesey et al., 2013] in terms of magnitude, extent, and duration. Higher CO in western
Indonesia than in the east is also the case for the duration of the episode through mid-November [Livesey
et al., 2013]. The red box in Figure 3b shows the primary emissions region. The black box in Figure 3b shows
the region over which we focus comparison between Aura and ModelE2 CO in the upper troposphere.
Quantitative comparison of ModelE2 CO was focused on the October 2006 ensemble average over this
region rather than cell-by-cell variability within the region.

Figure 4 shows the October 2006 simulated CO for AR5 and AR5′. Model CO fields are sampled at Aura loca-
tions, and vertical profiles are smoothed with averaging kernels. The missing values in the western Pacific are
due to gaps in the observed sampling coverage (Figure 4). In Table 2, we list the mean October 2006 CO over
the upper tropospheric analysis region (the black box in Figure 3b) for AR5, AR5′, and the intermediate experi-
ments. Statistics are provided for the raw model CO profiles and the model profiles after applying the Aura
operator. The standard deviation is that of the mean regional CO across the 12 ensemble members for each
physics perturbation experiment (and not across individual, daily grid cells). The 95% confidence interval is
that of the difference between AR5 and each perturbation. Experiments with confidence intervals that span
0 have mean upper tropospheric CO not significantly different from AR5 at the 95% confidence level.

ModelE2 CO at 215hPa is generally higher than Aura for AR5, in particular over Indonesia where model values
are well in excess of 300ppbv. Over the analysis domain in Figure 3b, mean CO across the 12 AR5 ensemble
members after applying the Aura operator is 209ppbv. ModelE2 with AR5′ physics still has a positive CO bias,
but the peak values over Indonesia are brought into better agreement with Aura CO, as is themean of 143ppbv
across ensemble members. The 66ppbv difference between AR5 and AR5′ across ensemble members is statis-
tically significant at the 95% level (Table 2). There is also a weaker CO gradient between Indonesia and the
Pacific for AR5′, possibly due to changes in upper tropospheric circulation induced by the convective changes.

Figure 5 shows the evolution of the Aura, AR5, and AR5′ upper tropospheric CO over the large domain from
the start of localized burning in August, to the October peak, to the full return of the monsoon in December
2006. The Aura operator has been applied to model CO fields before taking the mean across the 12 ensemble
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members of each experiment. The large day-to-day variability of the AR5 and AR5′ fields is due to the sparse
sampling of the Aura operator shown in Figure 3a. Modeled upper tropospheric CO reflects the emissions
changes in Figure 1 but modulated by the different transport between experiments. In July, before serious
burning has started, AR5 and AR5′ background CO is ~80 ppbv compared to ~55 ppbv for Aura. For AR5, this
bias increases more rapidly as the event builds up. The difference between AR5 and AR5′ CO grows as the
emissions increase in August and September, peaking in October. Especially if we allow for a 20–30% low
Aura CO bias in the upper troposphere, the AR5′ CO is brought into better agreement with Aura. The raw
model CO without the Aura operator (not shown) evolves similarly to that in Figure 5, but with higher upper

Figure 7. Regional time-height ModelE2 CO for (a) AR5 and (b) AR5′. Model fields have been sampled at Aura locations but
without averaging kernel smoothing.

Figure 6. Regional time-height Aura CO.
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tropospheric CO (Table 2) that would not be resolved by Aura and less day-to-day variability due to the
absence of location sampling.

Figure 6 shows the Aura time-height CO evolution over the same horizontal region as Figure 5. There is also high
CO in themidtroposphere (Figure 6), consistentwith Logan et al. [2008]. Figure 7 shows theModelE2 time-height
CO evolutionwith Aura location sampling but no averaging kernel smoothing of the rawmodel CO, to provide a
sense of how the model distributes CO from the surface during the event. Differences in CO between AR5 and
AR5′ in the upper troposphere are greater than in the lower troposphere. By December, burning has stopped,
the tracer source is removed, and AR5 and AR5′ reconverge toward a background CO higher than in July, which
presumably reflects ambient, residual CO from the event. Figure 8 is the same as Figure 7 but with averaging
kernel smoothing as in Figures 4 and 5, which allows for comparison against the Aura vertical profile in
Figure 6. Much of the vertical structure in the rawmodel output is smoothed away. For both AR5 and AR5′, high
CO close to the surface in the raw model output (Figure 7) is absent in the smoothed model CO because of the
retrieval’s decreasing sensitivity toward the surface. Despite this loss in vertical detail, differences between AR5
and AR5′ CO are still apparent, and AR5′ (Figure 8b) is in better agreement with Aura (Figure 6).

3.2. Differences in Convective CO Transport Between AR5 and AR5′

Previous studies have related upper tropospheric CO variability to proxies of deep convective transport such
as cloud top height [Zhang et al., 2011] and ice water content [Livesey et al., 2013]. Similarly, lower precipita-
tion over the source region in AR5′ (Figure 2d) compared to AR5 (Figure 2c) hints at the role of convection in
reducing upper tropospheric CO for AR5′. To isolate the role of convection, we diagnosed the CO tendency
due to parameterized convection. The diagnosed quantity captures the net effects on CO of all parameterized
convection processes: updrafts, downdrafts, entrainment from the environment into updrafts and
downdrafts and vice versa, plume-top detrainment into the large-scale environment, and compensating
within-grid cell subsidence. Positive tendencies indicate a net convective supply into a region across these
processes, and negative tendencies indicate a net loss.

Figure 8. Same as Figure 7 but with Aura averaging kernel smoothing.
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Figure 9 shows the mean upper tropospheric CO tendency due to convection for AR5 and AR5′ for October
2006. This is the mean of the change in upper tropospheric CO due to all convective processes computed at
each time step. More CO is supplied to the upper troposphere by convection for AR5 (Figure 9a). The region
of positive CO convective tendency is centered slightly to the north of the source region for both experi-
ments and is weaker for AR5′. At the surface, there is strong southerly flow over the source region for
AR5 and AR5′ (not shown), suggesting that some of the emissions are advected toward more convectively
active regions to the north over the South China Sea, as indicated by the precipitation fields in Figures 2c
and 2d.

Figure 10 shows time-height CO convective tendency over the source region spanning southern Sumatra
and southern Kalimantan (rather than the larger domain in Figures 6–8). For AR5 (Figure 10a), as the burning
increases in August, there is net convective CO loss near the surface and a gain in upper troposphere. When
the CO emissions peak in October, the mean convective tendency for AR5 from the surface to 850 hPa is
�189 ppbv/d and more CO is supplied to the upper troposphere than the lower free troposphere. For AR5′
(Figure 10b), convective loss from the surface is much weaker than AR5 in August and September and only
increases in mid-October with the southward migration of the ITCZ. During the October emissions peak, the
mean convective CO tendency is�64 ppbv/d for AR5′ and more CO is supplied to the lower free troposphere
(~700 hPa) than to the upper troposphere. In the upper troposphere, the mean October convective tendency
of CO is 71 ppbv/d for AR5 and 17 ppbv/d for AR5′, and the difference between the two is statistically signifi-
cant at the 95% level across the 12 ensemble members.

Figure 11 is the same as Figure 10 but north of source region, where there was also a strong supply of CO to
the upper troposphere. There is steady net convective CO loss near the surface from July to September for
both experiments. During the October emissions peak, net convective loss from the surface to 850 hPa for
AR5′ is stronger (�189 ppbv/d) than AR5′ (�61 ppbv/d), which reflects weaker loss in AR5′ at the beginning

Figure 9. Mean October 2006 upper tropospheric CO tendency due to convective processes for (a) AR5 and (b) AR5′.
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of the month and a narrow band of CO supply to the surface at the end of the month. In the upper tropo-
sphere, the mean October convective tendency of CO is 91 ppbv/d for AR5 and 31 ppbv/d for AR5′, and
the difference between the two is statistically significant at the 95% level. During the October burning peak,
AR5 convective supply to the upper troposphere is in fact 20 ppbv stronger than over the source region
(Figure 10a). For AR5′ (Figure 11b), most CO is supplied to the lower free troposphere rather than upper tropo-
sphere, similar to the source region. Up until mid-October, the height of maximum CO convective tendency
in AR5′ is between 500 hPa and 800 hPa, compared to between 200 hPa and 400 hPa for AR5. After mid-
October for AR5′, there is a greater mix between CO supplied to the lower troposphere and upper tropo-
sphere. The small net downward supply to the surface illustrates that CO transported downward through
either downdrafts or within-grid cell compensating subsidence is non-negligible and that we are diagnosing
the net vertical transport of sometimes competing processes.

Figure 12 shows that over intermediate experiments spanning AR5 to AR5′, there is a strong positive relation-
ship between convective CO tendency from north of the source region and regional CO in the upper tropo-
sphere. Much of the CO variability across the large domain without any other large sources can be explained
by the convective transport over a relatively small region close to the emissions source. Upper tropospheric
CO changes over the analysis domain in Figure 3b are listed in Table 2. The biggest single changes from the
raw AR5 average of 238 ppb are due to the new entrainment mass limiter (AR5_EntrMassLim, 210 ppb), more
re-evaporation above cloud base (AR5_RevpAboveCldBase, 194 ppb), and a negative buoyancy threshold
for downdraft initiation based on density temperature (AR5_TρDDrft, 196.2). Individually, each caused a
30–40 ppb CO decrease from the AR5 October mean, all of which were significant at the 95% level across
ensemble members. The experiments with slightly higher entrainment coefficient (AR5_HighEntCoef) and
less downdraft re-evaporation (AR5_LessDDrftRvp) were not significantly different from AR5. The experiment
with all cumulus changes made simultaneously (AR5_CumulusChanges) was 76 ppbv lower than AR5 and
constituted most of the difference between AR5 and AR5′.

Figure 10. Time-height plot of CO tendency due to convection over source region for (a) AR5 and (b) AR5′.
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4. Discussion

There were large discrepancies between upper tropospheric Aura CO and the AR5 physics version of
ModelE2, which should be viewed in the context of previous evaluations of ModelE. The AR4 version CO
was 20 ppbv lower than MOPITT in the globally averaged midtroposphere over 2000–2004 [Shindell et al.,
2006]. Over 2000–2006, the ModelE2 AR5 CO was 22 ppbv higher than MOPITT globally averaged midtropo-
sphere [Naik et al., 2013]. This was consistent with the positive bias relative to TES identified by Voulgarakis

et al. [2011], who attributed the change
in bias direction from AR4 to AR5 to new
anthropogenic emissions estimates and
also to a possible low CO bias in TES.

Over Indonesia in 2006, upper tropo-
spheric CO in AR5 is unrealistically high
(Figure 5) to a degree well beyond the
known Aura biases. Based on this discre-
pancy, it would be justifiable tomodify bio-
mass burning emissions from Indonesia to
bring the model and satellite estimates
into better agreement. Bottom-up esti-
mates of biomass burning emissions are
uncertain, particularly in Indonesia due to
a poor understanding of, and satellite
detection issues related to, peat burning.
Nassar et al. [2009] conducted GEOS-
Chem simulations of the event using
prescribed GFED v2 emissions, finding

Figure 11. Same as Figure 10 but north of source region.
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reasonable agreement with TES CO in the midtroposphere through October over western Indonesia. Into
November, TES CO persisted at ~240ppb, but GEOS-Chem decreased to ~160ppb, effectively doubling
GEOS-Chem’s low CO bias relative to TES. They found better agreement by increasing GFED emissions over
the source region by a factor of three in November 2006. Similarly, Zhang et al. [2011] found that at the event’s
peak, CO at 215 hPa was 40–50ppb higher for GFED v3 than v2, due to the former’s higher emissions.

What we have shown is that for this case, subgrid physics changes can change the vertical CO distribution to
a degree comparable to large emissions changes made in other studies. In this case, ModelE2 CO with AR5′
subgrid physics (Figure 8b) was brought into better agreement with Aura CO (Figure 6) through the depth of
the troposphere. The AR5′ CO is still higher than Aura CO during the peak of the event (Figure 5), but if we
allow for a 25% Aura CO increase to ~150 ppb to account for its likely low bias, there is fairly close agreement
between the model and satellite.

That convection played an important role in supplying CO from the surface to the upper troposphere is
unsurprising. Nassar et al. [2009] found that significant CO is supplied convectively from the surface to the
upper troposphere using experiments where tracer transport by deep convection was turned off. Zhang
et al. [2011] also simulated the event using GEOS-Chem, comparing upper tropospheric CO concentrations
for GEOS-4 and GEOS-5 prescribed meteorology. At 215 hPa, CO from the GEOS-4 simulation was
30–40 ppb greater than GEOS-5 during the peak of the event. Liu et al. [2013] found smaller differences in
CO at 215 hPa over Indonesia in their comparison of GEOS-4 and GEOS-5 than Zhang et al. [2011], which could
in part be due to differences in their western Indonesia analysis domains, but they did find significant differ-
ences elsewhere in the tropics.

Zhang et al. [2011] attributed the higher upper tropospheric CO for simulations with GEOS-4 to stronger deep
convection inferred from simulated upper tropospheric 222Rn in the zonal mean, and stronger convective
precipitation and higher cloud top height over western Indonesia. Similarly, precipitation over the source
region (Figure 2), as a general indicator of convective activity, was higher for AR5 compared to AR5′, but
the differences were small relative to much sharper gradients elsewhere in the region.

By looking in more detail at how the source strength, horizontal surface transport, and convective CO trans-
port varied within a large domain over western Indonesia, we were able to understand how CO was supplied
to the upper troposphere and how this differed between AR5 and AR5′. Either directly above the source
region or after horizontal advection at the surface to the southern fringe of the model’s ITCZ (Figure 9), para-
meterized convection plays a significant role in vertically redistributing CO in both simulations. Our interpre-
tation of the differences in CO convective tendency between experiments is that during the period of
interest, AR5′ simulates convective towers that are weaker and shallower than those of AR5. The parameter-
ization changes that are applied to AR5′, especially those to the cumulus parameterization, generally affect
the behavior of convection depending on the amount of environmental humidity. When the environment
is dry, AR5′would produce weaker and shallower convective plumes than AR5 because its convective plumes
entrain more subsaturated environmental air that would lead the plume to quickly lose its buoyancy. When
the environment is humid enough (e.g., in a nearly saturated column), however, entraining more environ-
mental air would not affect plume’s buoyancy much but increase the convective mass flux, indicating
stronger convection. During October, midtropospheric relative humidity in the source region and that north
of the source region are lower for AR5′ than AR5, but both remain mostly lower than 50% in both simulations
(not shown). It is difficult to separate the subgrid and large-scale environmental influences on relative
humidity, but for both cases, it is generally below 50%. This environmental condition—the effectively dry
midtroposphere—might partially explain why convective plumes are shallower and weaker in AR5′ than in
AR5. Allowing more re-evaporation above cloud base also contributed to lower net upward CO transport
(Figure 12), but at present a localized mechanism causing the change is not clear.

Ott et al. [2011] examined the sensitivity of modeled CO to perturbed subgrid physics for the GEOS5 with a free-
running atmosphere forced only by observed sea-surface temperatures. For Indonesia, they examined SON 2002
during which emissions were much smaller than 2006 but still above average. GEOS-5 simulations with two
representative convective configurations having minimum and maximum amounts of convective activity
showed nearly identical amounts of CO up to 1 km over a region approximately the same as the source region
defined in Figure 10. They found that when convection was reduced, large-scale vertical and horizontal mass
flux compensated to remove CO from below 1km. The eventual vertical fate was not examined for that case,
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and it is possible that there were different
upper tropospheric CO levels for convection
and slow, grid-scale ascent. But over a 4 year
mean, seasonal zonal CO means were also
fairly similar between the two end-
members. The most likely reason for the
greater vertical sensitivity to the physics
changes in Table 1 for ModelE2 is our inclu-
sion of more substantial structural changes
compared to the single parameter adjust-
ments that were examined exclusively by
Ott et al. [2011] for GEOS-5. Another factor
is our examination of the upper tropo-
spheric CO response to a uniquely large
emissions pulse. At a subseasonal timescale,
differences in the effects of slow and fast
vertical CO ascent would bemore apparent.

Returning to a more conventional type of model evaluation, an obvious question is how the physics changes
affected precipitation over the region, because a stronger than normal dry season was part of what caused
the severe burning in the first place [van der Werf et al., 2008; Field and Shen, 2008]. Over the source region
in Figure 2b, mean AR5 precipitation from July to October was 4.1mm/d compared to the 1.8mm/d GPCP
estimate (Figure 13). Mean July–October AR5′ precipitation was 1.3mm/d, slightly lower than GPCP but in
better agreement. The difference between AR5 and AR5′ mean precipitation for this period is significant at
the 95% significance level across ensemble members, and the AR5′ precipitation increase with the return
of the monsoon also appears more realistic. Less AR5′ precipitation during the July–November period is
generally consistent with a May–November decrease in precipitation over the region in Kim et al. [2012]
for the same cumulus changes over a 20 year mean. The lack of variance in the AR5 and AR5′ compared to
GPCP (Figure 13) is partly due to averaging across ensemble members. Less precipitation over the source
regionmight suggest that less convection overall is contributing to a lower free-tropospheric CO for AR5 than
AR5′, in addition to a lower altitude of maximum convective CO tendency.

ModelE2 emissions are prescribed from GFED estimates in this study and will not respond to precipitation
differences between the AR5 and AR5′. But as prognostic fire activity becomes more common in ModelE2
[Pechony and Shindell, 2009] and becomes more sophisticated for models in general [Voulgarakis and Field,
2015], it is useful to think about the dependence of prognostic fire estimates on uncertainty in other model
components, with precipitation being among the most important. That the AR5′ version of ModelE2 pro-
duces a realistic MJO is important given the possibility that its absence can influence fire activity in
Indonesia [Reid et al., 2012]. Identifying a different precipitation response to ENSO and Indian Ocean
Dipole conditions between AR5 and AR5′would also be useful toward modeling strong interannual variability
in biomass burning emissions.

5. Conclusions

For practical reasons, different parts of a composition-climate model are developed independently. The
70–80 ppbv difference in upper tropospheric CO over Indonesia in October 2006 between AR5 and AR5′ ver-
sions of ModelE2 reinforces the need to consider all possible reasons for composition errors. Naik et al. [2013]
found a strong positive bias in their multimodel mean CO in the midtroposphere over the tropics relative to
MOPITT (see their Figure 2b). Discrepancies in biomass burning emissions were suggested as the reason, but
their pattern of CO bias also corresponds roughly to tropical rainfall patterns, which suggests a convective
influence. Any adjustments to emissions estimates, for example, could partially be compensating for other
problems in the model. These effects have been shown for CTMs by comparing simulations using different
reanalyses where a bulk set of physics changes have been implemented, or an entirely new cumulus scheme
has been introduced. The intermediate CCM experiments between AR5 and AR5′ conducted in this study
show how a bulk set of physics changes can be examined individually to identify the most important
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changes, which in the case of ModelE2’s vertical CO distribution were a new entrainment mass limiter, more
re-evaporation above cloud base, and a negative buoyancy threshold for downdraft initiation based on
density temperature.

As in Liu et al. [2010], this work has implications for studies using inverse methods to estimate the uncertainty
or biases in emissions. We showed that upper tropospheric CO could be reduced significantly by changing
the vertical transport characteristics of the forwardmodel. This does not preclude errors in estimated biomass
burning emissions but reinforces the need to consider subgrid physics errors at the same time to account for
different sources of uncertainty. In this case with the CCM, we are able to conduct individual experiments to
identify the most important parameterization changes. In theory, one could estimate a distribution of
different inversion estimates using an ensemble of similar experiments for a more comprehensive estimate
of forward model transport error.

Conversely, this study hints at the potential for using trace gas measurements to evaluate model parameter-
izations alongside more conventional measurements, as has been suggested previously [Folkins et al., 2006;
Livesey et al., 2013]. In that context, our comparison against Aura CO retrievals is an independent check on the
physics changes proposed for different reasons, namely, the reasonable simulation of the MJO and slightly
improved marine stratocumulus over the eastern oceans. In neither case were there dramatic improvements
in mean precipitation state. But with the significant improvement in agreement with TES stable water isotope
retrievals for a similar set of experiments [Field et al., 2014], the improved vertical CO distribution for the case
considered here does suggest that the underlying AR5′ physics changes have fundamental advantages over
those in AR5. As trace gas retrievals mature and their biases and errors become better characterized, they will
become more useful as for model evaluation alongside more conventional measurements.

The underlying reasons for the differences between AR5 and AR5′ CO warrant further attention. We diag-
nosed the net effects of parameterized convection, which in reality reflect the contributions of sometimes
competing factors, such as the frequency of convection, updraft strength, detrainment height, and down-
ward transport through downdrafts and compensating subsidence. A useful next step would be to diagnose
and determine the relative importance of each in estimating a complete budget of CO variability. The effects
of large-scale horizontal and vertical transport and chemical production and destruction should also be taken
into account.

Future work should also broaden the experiments and diagnoses to include emissions and chemistry-related
influences in a systematic way alongside the convective processes examined here. Marlier et al. [2014] illu-
strated the benefits of using GFED emissions estimates with daily temporal frequency for ModelE2, which
could interact with the timing of the onset of deep convection to affect upper tropospheric CO in Figure 5,
either positively or negatively. Three-hourly resolution biomass burning estimates are now available
[Mu et al., 2011], which could interact with the diurnal cycle of convection across different model versions.
Because ModelE2 is a full complexity composition-climate model, we also cannot exclude the possibility that
secondary chemical effects related to the convective changes are also playing a role on CO distribution, for
example, convective influences on OH via effects on water vapor, ozone, and photolysis. Using chemical
diagnostics that are more process oriented, such as the ozone-CO correlation, can also provide further insight
into how differences in convection parameterizations may affect the chemical processing of emissions, given
the possibly strong sensitivity of such ametric to the handling of vertical transport in models, as suggested by
Voulgarakis et al. [2011].

We have also not examined the effects of the convective changes on aerosols or other important, measureable
trace gases, and their agreement with observations, to determine if the AR5′ improvements hold up for other
quantities. Future work should include these comparisons. Conversely, although much uncertainty remains,
emitted aerosols from fires in Indonesia (and in general) can affect regional radiation balance [Podgorny
et al., 2003; Duncan et al., 2003], circulation [Ott et al., 2010; Tosca et al., 2010], and precipitation [Langmann,
2007; Tosca et al., 2010] to different degrees depending on the relative amounts of organic and black carbon
emitted. It would be useful to understand the magnitude of these effects for ModelE2, and their sensitivity
to physics changes alongside uncertainty in the emissions and the model’s cloud and aerosol microphysics.
Lastly, extending the analysis to other years and across the tropics to include important low-latitude, pollutant
source regions such as South Asia, tropical Africa, and the tropical Americas will be important to see if
parameterization-dependent transport mechanisms are different outside of the Maritime Continent.
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